Novichok: The deadly story behind Russia’s nerve agent

chemical weapons
Soldiers wearing World War I gas masks. L-R: American, British. French, German (Shutterstock)

Against the backdrop of Salisbury’s beautiful cathedral, a new word recently gained global notoriety. But the three people who had the right to know most about Novichok, a nerve agent, were oblivious to its sudden appearance in headlines around the world – for they lay fighting for their lives in a British hospital.

Former Russian spy Sergei Skripal, 66, his daughter Yulia, 33, and police detective sergeant Nick Bailey, were all exposed to Novichok (or “newcomer”, to use its more parochial translation from Russian) in the English city on March 4. The circumstances surrounding the case are still being investigated – but the latest (unconfirmed and improbable) reports suggest that Skripal may have been exposed through the air vents of his BMW car.

Skripal was directly targeted, and perhaps his daughter was too, although it may simply have been Yulia’s proximity to her father that resulted in her exposure. Bailey was affected by the nerve agent as he was one of the first to respond and came into contact with it at a location as yet unknown. The police officer’s exposure is more likely to have been through contact with the nerve agent contaminating some surface.

At the time of writing, the Skripals remain in a critical condition in hospital. Bailey, meanwhile, is reportedly making a slow recovery and may be able to speak about his ordeal, perhaps providing vital clues. Environmental sampling will provide the evidence showing where the Skripals were most likely exposed and, hopefully, how that exposure occurred.

While the full facts have yet to come to light, the Novichok attack is developing into a full-blown international incident. The UK and Russia, which Britain has blamed for the attack, are now engaged in an increasingly bad-tempered tit-for-tat expulsion of diplomats.

The UK foreign secretary, Boris Johnson, even pointed the finger squarely at the Russian president, Vladimir Putin himself. Johnson said:

We think it overwhelmingly likely that it was his decision to direct the use of a nerve agent on the streets of the UK, on the streets of Europe, for the first time since the Second World War.

So how did we get here? And why do these lethal chemical agents exist at all?

The first nerve agents

The story stretches back to 1936, when the first nerve agent, named tabun (after the German word for “taboo”), was synthesised by talented German chemist Gerhard Schrader. Schrader was investigating organophosphate compounds for the Third Reich in an effort to find suitable insecticides to improve crop yields. He quickly discovered that tabun was too toxic to ever be used in farming as it would almost certainly kill those applying it. A year later, however, he developed a second, even more toxic nerve agent: sarin.

Reasons for this are unclear. Some historians cite Hitler’s own exposure to chemical weapons during World War I and his apparent revulsion towards their use in battle. Others note Churchill’s warning to Hitler that any use by Germany of chemical or biological agents would be met with a swift response. But the most convincing reason is likely to be the one mooted by Schrader himself.In debriefings by Allied intelligence officers after World War II, Schrader said that he’d been required to inform the Nazi authorities about his discoveries. But while Germany made munitions with both tabun and sarin, which were discovered at the end of the war, they were never used against Germany’s opponents.

Schrader noted in his post-war debrief that other scientists around the world, including in Britain, were working on organophosphate chemicals and believed that they were almost certain to have also discovered nerve agents. So if Germany used them, other countries would use them on Germany. In fact, Schrader was wrong; only Germany had the chemicals.

Nazi Germany had weaponised nerve agents, but never used them against Allied troops, pictured here landing during D-Day. (Shutterstock)

Going global

After World War II, however, the UK, US and Soviet Union gained access to Nazi chemical know-how – and many German scientists began working for the victors. At the time, the prevailing view was that chemical weapons would almost certainly be used in a future conflict, and so the military usefulness of nerve agents such as tabun and sarin was investigated.

But tabun and sarin had their limitations. They were well suited for use on a rapidly moving battlefront because they vaporised and broke down in contact with water and so would disappear rapidly after use. But this left a gap in the arsenal, so-to-speak, for more persistent, longer-lived agents.

These were developed in the UK in the 1950s and include the now well-known VX. This was the nerve agent used in the 2017 assassination of Kim Jong-nam, the half-brother of North Korean leader Kim Jong-un, in Kuala Lumpur airport.

Unlike sarin and tabun, VX-type agents, which have an oily texture and are very slow to evaporate, were considered to be what’s called area-denial chemicals. Any troops, or vehicles, moving through an area where VX had been used would have to be rigorously protected, compromising their manoeuvrability and fighting efficiency.

Nerve agents were evolving. But so too were the kinds of targets for chemical weapons. Increasingly, they were being used against civilians.

Who controls them?

About 20 different nerve agents have now been manufactured and all are listed, and restricted, under the 1997 Chemical Weapons Convention. Novichoks are an exception because they have never been declared, more on which later.

In World War I, before the arrival of nerve agents, it was primarily troops who were affected by chemical weapons. During that conflict, some 1.5m military casualties were exposed to irritants such as chlorine and phosgene, or the blistering agent mustard gas – and around 8-10% of those affected, died. Meanwhile, around 1,000 civilians were injured by chemical weapons during that war.

Since World War I, however, chemical weapons have been used by Italy in Abyssinia (now Ethiopia) in 1935-6; by Japan in China during World War II; by Egypt in Yemen between 1963 and 1967; by Iraq in Iran (1983-1988) and Kurdistan (1988); and between 2013 and 2017 by the Syrian government against its own people. Sarin was also used in a 1995 attack on the Tokyo subway by the Aum Shinrikyo doomsday cult, killing 13 and making thousands more ill. This is not a comprehensive list, but many of the victims of these attacks, particularly in Kurdistan and Syria, were civilians rather than troops.

Evidence of Iraq’s 1988 chemical attack on civilians in the Kurdistan town of Halabja, which included the use of sarin nerve agent, accelerated discussions already underway on a comprehensive chemical weapons treaty at the UN Council on Disarmament. In 1993, the Chemical Weapons Convention (CWC) was agreed. In 1997, the convention became international law following ratification of the treaty by 65 countries.

Today, 192 countries are fully paid-up members of the convention with only North Korea, Israel and Egypt still not part of the group. However, as the convention is international law, these three countries are still bound by its provisions that any use of a chemical to deliberately harm another person constitutes use of a chemical weapon – and is illegal.

The Organisation for the Prohibition of Chemical Weapons (OPCW) oversees implementation of the Chemical Weapons Convention and supervises destruction of declared chemical weapons and any production facilities for these weapons. To date, approximately 96% of declared stockpiles have been destroyed. In October 2017, Russia announced that it had destroyed its stocks of some 40,000 tonnes. The US is expected to complete destruction of its weapons stockpile by around 2021-2022.

In addition to supervising the destruction of stockpiles, the OPCW operates a control regime for chemicals that are either chemical weapons or could be used to make them. Every year, each signatory to the convention is required to provide the OPCW with details on the location, manufacture, use, sale or disposal of these substances. The OPCW audits these returns and verifies them by random annual inspections of some 400 military bases and chemical companies around the globe.

All manufacturing programmes which resulted in stocks of chemical weapons exceeding one tonne per year after January 1, 1946 must be declared to the OPCW. But on March 16, 2018, the OPCW announced that it had never been notified about Novichok-type nerve agents by any state.

So what is Novichok and what does it do to its victims?

Novichok family

There is no doubt that nerve agents similar to the Novichok family exist, something that has been described by defectors from Russia. One of these was used to poison the Skripals and Bailey.

Nerve agents, including certain Novichoks, are part of the family of organophosphate compounds – albeit at the most toxic end of the spectrum. They all operate in a similar way by inhibiting the enzyme acetylcholinesterase (AChE). The enzyme can be found in various locations in the body, but it’s at the junctions between nerves and muscles where its activity is most critical. AChE regulates the message from nerve to muscle by inactivating the neurotransmitter acetylcholine.

Acetylcholine binds to receptors at the neuromuscular junction, instructing the muscle to contract. The enzyme then removes this messenger, splits it in two, and with its removal from the receptor the muscle relaxes. This cycle is repeated as often as required by the demands on the muscles.

Inhibition of this removal and cleavage process sends all muscles into spasm and they no longer function normally. The effects are wide-ranging with the most critical being on lung and heart function. Respiratory paralysis is common in severe poisoning and the resulting lack of oxygen to critical organs, such as the heart and brain, can have serious consequences. If untreated, it may be fatal.

Exactly where, when and by whom these chemicals were made, however, and how and who used them against the Skripals remain unclear, triggering a major international crisis.

Was Putin really behind the Skripals nerve agent attack? (Shutterstock)

The UK is now exercising its rights under the CWC and has asked the OPCW to investigate Russia’s so-called Novichok programme. This is the first time one party to the CWC has accused another of attacking it with a chemical weapon. It will be a major challenge for the OPCW, which has been invited to send inspectors to the UK to collect samples for testing. The OPCW will use its own laboratory in Rijswijk, next to The Hague, and perhaps one of some 20 other designated facilities around the world to confirm the exact identity of the nerve agent.

Once it is confirmed, the OPCW will endeavour to find out more. However, it has never pointed the finger of blame at a user. Its remit is to confirm the use or identity of chemical agents and it can be called upon to carry out inspections in countries accused of using one. Others, such as the UN, will then assess the evidence and do the finger pointing. This is what happened when Syria was accused in 2017 of using chemical weapons against its own population.

The CWC does not preclude bilateral action by its signatories – and Britain and Russia have already begun expelling each other’s diplomats over the row. Russia has also closed the British Council and a UK consulate in St Petersburg.

On the ground

But what of the situation on the ground in Salisbury, where the Skripals were attacked? Nerve agents can poison somebody though inhalation, ingestion or skin contact which is why investigators in Salisbury are wearing full protective clothing and gas masks.

In fact, it is now the investigators, rather than the public, who face the risk of sustained exposure to any contamination. Some 130 people have so far been identified who may have been in contact with the agent but none beyond the Skripals and Bailey have shown any symptoms.

It was reported that the Skripals were essentially comatose when discovered and so were unable to say how they felt. But paramedics would likely have found the couple struggling to breathe. They may also have noticed twitching muscles, a glassy appearance to the eyes with pinpoint pupils and profuse salivation. In hospital, there may have been evidence of increasing fluid build-up in the lungs, and their heart rates may either have been rapid or slowed, and uneven.

Effects on the brain would be less evident as the couple were unconscious, but can include restlessness, headache, confusion and convulsions. A part of the brain is concerned with regulation of respiration and this may be affected directly, slowing breathing. A fall in blood pressure is also likely.

Possible treatments

Antidotes to reverse the clinical effects of nerve agents are available and are more likely to be successful if administered early. Around 200 cases of less severe accidental poisoning and four severe ones have been reported since 1948.

In all of the severe cases, the person poisoned lost consciousness and breathing was inhibited. But prompt treatment by doctors who were nearby and aware of the potential for exposure resulted in the victims’ full recovery.

In a quirk of fate, the UK’s own defence teams against chemical weapons are located at Porton Down, just outside Salisbury. Indeed, there have also been tests on hundreds of military servicemen with small doses of nerve agents and in 1953, after one poorly conducted test in the UK, a 20-year-old leading aircraftman, Ronald Maddison, died. The 2004 inquest into his death returned a verdict of unlawful killing. It’s also claimed that in the Novichok programme one person was accidentally exposed and died.

Treatment can include the rapid administration of atropine. This blocks the effects of acetylcholine accumulation by occupying the same receptors and reverses some symptoms, but has little effect on skeletal muscle. The rule of thumb is to maintain dosing of atropine (at intervals) until the heart rate is over 90 beats per minute. Administration may be necessary for a significant period.

Drugs known as oximes can also be used as an antidote. These restore enzyme activity and, crucially, skeletal muscle function. But oximes tend to be specific for certain types of nerve agent and it is unclear which would work with the specific Novichok agent as there is little information in the public domain about them or their effective treatments. Faced with this dilemma, the clinicians treating the Skripals and Bailey would have had to have made a choice.

A third drug used in nerve agent poisoning is diazepam, which can prevent any dangerous convulsions which might occur. Regrettably, however, evidence indicates that severe nerve agent poisoning can cause long-term irreversible changes in brain function.

Nerve agents are grotesque weapons and their use against civilians is a deeply disturbing trend. But in the weeks to come, there will have to be a dispassionate review of the evidence. And as the spat between Russia, and the UK and its allies worsens, cool heads will be needed.

Amid all this frenetic activity, however, we must not forget the three victims – and wish them a swift recovery. After all, they are the ones paying the heaviest price.


By Alastair Hay, Professor of Environmental Toxicology, University of Leeds

This article was originally published on The Conversation. Read the original article.

A priest’s hilarious diary reveals how rowdy London’s theatres were in the 1700s

Karl Philipp Moritz
A portrait of Karl Philipp Moritz

In the late 1700s, a young German priest and self-confessed Anglophile called Karl Philipp Moritz (1756-1793) fulfilled an ambition to go travelling around England. The product of that trip is an incredible diary Journeys of a German in England in 1782, though the translated edition in English is called, somewhat less pithily, Travels, chiefly on Foot, through several parts of England in 1782, described in Letters to a Friend.

Moritz offers an incredible window into English social history, detailing his encounters will people from both low and high society, in all sorts of scenarios, from cooking toast over the fire in a tavern to being shown around the university buildings in Oxford. He encounters a lot of friendliness, particularly in London, but as he travels out to the country, he experiences a lot of anti-German xenophobia, which taints his love for England.

One of the most memorable passages in the diary – and there are many – is his description of how rowdy London’s theatres were in their Georgian heyday. So here it is below. (If you want to read Moritz’s diary, Project Gutenberg turned it into an ebook and there’s even a free version for the Kindle.)

The Theatre in the Haymarket.

Last week I went twice to an English play-house…For a seat in the boxes you pay five shillings, in the pit three, in the first gallery two, and in the second or upper gallery, one shilling. And it is the tenants in this upper gallery who, for their shilling, make all that noise and uproar for which the English play-houses are so famous. I was in the pit, which gradually rises, amphitheatre-wise, from the orchestra, and is furnished with benches, one above another, from the top to the bottom.

Often and often, whilst I sat there, did a rotten orange, or pieces of the peel of an orange, fly past me, or past some of my neighbours, and once one of them actually hit my hat, without my daring to look round, for fear another might then hit me on my face.

All over London as one walks, one everywhere, in the season, sees oranges to sell; and they are in general sold tolerably cheap, one and even sometimes two for a halfpenny; or, in our money, threepence. At the play-house, however, they charged me sixpence for one orange, and that noways remarkably good.

Besides this perpetual pelting from the gallery, which renders an English play-house so uncomfortable, there is no end to their calling out and knocking with their sticks till the curtain is drawn up. I saw a miller’s, or a baker’s boy, thus, like a huge booby, leaning over the rails and knocking again and again on the outside,
with all his might, so that he was seen by everybody, without being in the least ashamed or abashed. I sometimes heard, too, the people in the lower or middle gallery quarrelling with those of the upper one.

Behind me, in the pit, sat a young fop, who, in order to display his costly stone buckles with the utmost brilliancy, continually put his foot on my bench, and even sometimes upon my coat, which I could avoid only by sparing him as much space from my portion of the seat as would make him a footstool. In the boxes, quite in a corner, sat several servants, who were said to be placed there to keep the seats for the families they served till they should arrive; they seemed to sit remarkably close and still, the reason of which, I was told, was their apprehension of being pelted; for if one of them dares but to look out of the box, he is immediately saluted with a shower of orange peel from the gallery.

This is the oldest love poem in the world and it’s kind of beautiful

A cuneiform tablet from the ancient Middle East. (BabelStone/Wikimedia Commons)

Around four millennia ago, one of our lovestruck ancestors in the heat of the Mesopotamian desert grabbed their stylus and a clay tablet and got etching what would become the oldest known love poem in the world.

The ancient tablet was only discovered at the end of the 19th century by archaeologists digging in Nippur, southern Iraq – formerly Sumer in southern Mesopotamia – an area rich with history. And they did what archaeologists often do with the treasures of antiquity – slapped a reference number on it and stuck it in a museum drawer.

That reference number became the beautiful poem’s unseemly adopted name: “Istanbul #2461”. Its full title is actually The Love Song for Shu-Sin. But this was undiscovered for over seventy years because it was just sitting in storage. Nobody had got around to decoding its text.

According to the Ancient History Encyclopedia, the archaeologists who found the tablet took it to the Istanbul Museum in Turkey and locked away for decades until it was dug out again in 1951 by the famous Sumerologist Samuel Noah Kramer.

Kramer finally translated the mysterious cuneiform tablet to reveal the stunning truth about its origins and what it says.

The locals, Ancient Sumerians, were the first people to use a written language. They developed a system where symbols represented spoken sounds. These symbols were written into wet clay tablets using a stylus and the system is called cuneiform.

Nobody knows who wrote the poem. There are no other records of it, and no signature at the bottom to say who the poet was. But the Sumerian King Shu-Sin ruled around four thousand years ago.

Shu-Sin was king of Sumer and Akkad. He reigned under the Ur III dynasty and is known for building a large fortified wall between two rivers – the Euphrates and the Tigris – to stop violent nomadic groups attacking the cities under his control.

In his 1956 book History Begins at Sumer, Kramer recounts his discovery of the tablet.

While working in the Istanbul Museum of the Ancient Orient as Fulbright Research Professor—it was toward the end of 1951—I came upon a little tablet with the museum number 2461. For weeks I had been studying, more or less cursorily, drawerful after drawerful of still uncopied and unpublished Sumerian literary tablets, in order to identify each piece and, if possible, assign it to the composition to which it belonged. All this was spadework preparatory to the selection, for copying, of those pieces which were most significant—since it was clear that there would be no time that year to copy all of them.

The little tablet numbered 2461 was lying in one of the drawers, surrounded by a number of other pieces. When I first laid eyes on it, its most attractive feature was its state of preservation. I soon realized that I was reading a poem, divided into a number of stanzas, which celebrated beauty and love, a joyous bride and a king named Shu­-Sin (who ruled over the land of Sumer close to four thousand years ago).

As I read it again and yet again, there was no mistaking its content. What I held in my hand was one of the oldest love songs written down by the hand of man.

It soon became clear that this was not a secular poem, not a song of love between just “a man and a maid.” It involved a king and his selected bride, and was no doubt intended to be recited in the course of the most hallowed of ancient rites, the rite of the “sacred marriage.”

Once a year, according to Sumerian belief, it was the sacred duty of the ruler to marry a priestess and votary of Inanna, the goddess of love and procreation, in order to ensure fertility to the soil and fecundity to the womb. The time­honored ceremony was celebrated on New Year’s day and was preceded by feasts and banquets accompanied by music, song, and dance. The poem inscribed on the little Istanbul clay tablet was in all probability recited by the chosen bride of King Shu­-Sin in the course of one of these New Year celebrations.

 

Here’s Samuel Noah Kramer‘s “tentative translation”, as he described it, of the world’s oldest known love poem.

The Love Song for Shu-Sin

Bridegroom, dear to my heart,
Goodly is your beauty, honeysweet,
Lion, dear to my heart,
Goodly is your beauty, honeysweet.

You have captivated me, let me stand tremblingly before you,
Bridegroom, I would be taken by you to the bedchamber,
You have captivated me, let me stand tremblingly before you,
Lion, I would be taken by you to the bedchamber.

Bridegroom, let me caress you,
My precious caress is more savory than honey,
In the bedchamber, honey filled,
Let us enjoy your goodly beauty,
Lion, let me caress you,
My precious caress is more savory than honey.

Bridegroom, you have taken your pleasure of me,
Tell my mother, she will give you delicacies,
My father, he will give you gifts.

Your spirit, I know where to cheer your spirit,
Bridegroom, sleep in our house until dawn,
Your heart, I know where to gladden your heart,
Lion, sleep in our house until dawn.

You, because you love me,
Give me pray of your caresses,
My lord god, my lord protector,
My Shu­-Sin who gladdens Enlil’s heart,
Give me pray of your caresses.

Your place goodly as honey, pray lay (your) hand on it,
Bring (your) hand over it like a gishban-­garment,
Cup (your) hand over it like a gishban­-sikin­-garment,

It is a balbale­song of Inanna.